
Introduction to OpenRefine
This Introduction to OpenRefine was developed by Owen Stephens (owen@ostephens.com) on
behalf of the British Library in July 2014.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/.

It is suggested when crediting this work, you include the phrase “Developed by Owen Stephens on
behalf of the British Library”

1. Getting Started
What is OpenRefine?
OpenRefine is described as a tool for working with ‘messy’ data - but what does this mean? It is
probably easiest to describe the kinds of data OpenRefine is good at working with and the sorts of
problems it can help you solve.

OpenRefine is most useful where you have data in a simple tabular format but with internal
inconsistencies either in data formats, or where data appears, or in terminology used. It can help
you:

• Get an overview of a data set
• Resolve inconsistencies in a data set
• Help you split data up into more granular parts
• Match local data up to other data sets
• Enhance a data set with data from other sources

Some common scenarios might be:

1. Where you want to know how many times a particular value appears in a column in your data

2. Where you want to know how values are distributed across your whole data set

3. Where you have a list of dates which are formatted in different ways, and want to change all the
dates in the list to a single common date format:

4. Where you have a list of names or terms that differ from each other but refer to the same
people, places or concepts:

Data you have Desired data

1st January 2014 2014-01-01

01/01/2014 2014-01-01

2014-01-01 2014-01-01

Jan 1 2014 2014-01-01

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �1 31

mailto:owen@ostephens.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

5. Where you have several bits of data combined together in a single column, and you want to
separate them out into individual bits of data with one column for each bit of the data:

6. Where you want to add to your data from an external data source:

Downloading OpenRefine
You can download OpenRefine from http://openrefine.org/download.html
While the current (as of 10th July 2014) official ‘stable’ version is called ‘Google Refine 2.5’,
generally the “OpenRefine 2.6 - Development version” is recommended over this and although
labelled ‘beta’ has been stable for some time.

Data you have Desired data

London London

London] London

London,] London

london London

Data you have Desired data

Institution Library
name

Address 1 Address 2 Town/City Region Country Postcode

University of
Wales, Llyfrgell
Thomas Parry
Library,
Llanbadarn Fawr,
ABERYSTWYTH,
Ceredigion, SY23
3AS, United
Kingdom

University of
Wales

Llyfrgell
Thomas
Parry Library

Llanbadarn
Fawr

Aberystwyth Ceredigion United
Kingdom

SY23 3AS

University of
Aberdeen, Queen
Mother Library,
Meston Walk,
ABERDEEN,
AB24 3UE,
United Kingdom

University of
Abderdeen

Queen
Mother
Library

Meston Walk Aberdeen United
Kingdom

AB24 3UE

University of
Birmingham,
Barnes Library,
Medical School,
Edgbaston,
BIRMINGHAM,
West Midlands,
B15 2TT, United
Kingdom

University of
Birmingham

Barnes
Library

Medical
School

Edgbaston Birmingham West
Midlands

United
Kingdom

B15 2TT

University of
Warwick, Library,
Gibbett Hill Road,
COVENTRY, CV4
7AL, United
Kingdom

University of
Warwick

Library Gibbett Hill
Road

Coventry United
Kingdom

CV4 7AL

Data you have Date of Birth from VIAF (Virtual
International Authority File)

Date of Death from VIAF (Virtual
International Authority File)

Braddon, M. E. (Mary Elizabeth) 1835 1915

Rossetti, William Michael 1829 1919

Prest, Thomas Peckett 1810 1879

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �2 31

http://openrefine.org/download.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

There are versions for Windows, Mac OS X and Linux.

Installing and Running OpenRefine
When you download OpenRefine for Windows or Linux from the address above, you are
downloading a zip file. To install OpenRefine you simply unzip the downloaded file wherever you
want to install the program. This can be to a personal directory or to an applications or software
directory - OpenRefine should run wherever you put the unzipped folder.

If you are downloading OpenRefine for Mac, you a re downloading a ‘dmg’ (disk image) file which
you can open, and then drag the OpenRefine application to an appropriate folder on you computer.

OpenRefine is a java application, and you need to have a ‘java runtime environment’ (JRE)
installed on your computer to run OpenRefine. If you don’t already have one installed then you can
download and install from http://java.com by going to the site and clicking ‘Free Java Download’.

To run Refine:

• On Windows: Navigate to the folder where you’ve installed OpenRefine and either double-click
‘google-refine.exe’ (for Google Refine 2.5), ’openrefine.exe’ (for OpenRefine 2.6) or
‘refine.bat’ (for either)

• On Linux: Navigate to the folder where you’ve installed OpenRefine in a terminal window and
type ‘./refine’

• On Mac: Navigate to where you installed OpenRefine and click the OpenRefine icon

The interface to OpenRefine is accessed via a web browser. When you run Refine normally this
should open a window in your default web browser pointing at the address http://127.0.0.1:3333. If
this doesn’t happen automatically you can open a web browser and type in this address.

Getting Help
You can find support, documentation and tutorials on using OpenRefine in various places online
including:
This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �3 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://java.com
http://127.0.0.1:3333

• The OpenRefine Wiki https://github.com/OpenRefine/OpenRefine/wiki
• The ‘Free your metadata’ site http://freeyourmetadata.org/
• The OpenRefine mailing list and forum http://groups.google.com/d/forum/openrefine

Exercise 1: Create your first Open Refine project (using
provided data)
There are several options for getting your data set into OpenRefine. You can upload or import files
in a variety of formats including:

• TSV (tab-separated values)
• CSV (comma-separated values)
• Excel
• JSON (javascript object notation)
• XML
• Google Spreadsheet

To import the data for the exercises below, run OpenRefine and:

• Click ‘Create Project’
• Choose ‘Get Data from this Computer’
• Click ‘Choose Files’
• Locate the file called ‘BL-Flickr-Images-Book-subset.csv’ (this can be downloaded from http://

www.meanboyfriend.com/overdue_ideas/wp-content/uploads/2015/02/BL-Flickr-Images-Book-
subset.csv)

• Click ‘Next’

You should see a screen as follows:

This screen gives you some options to ensure that the data gets imported into OpenRefine
correctly. The options vary depending on the type of data you are importing.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �4 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OpenRefine/OpenRefine/wiki
http://freeyourmetadata.org/
http://groups.google.com/d/forum/openrefine

In this case you need to:

• Set the ‘Character encoding’ to ‘UTF-8’
• Ensure the first row is used to create the column headings
• Make sure OpenRefine doesn’t try to automatically detect numbers and dates

Once you are happy click ‘Create Project >>’

This will create the project and open it for you. Projects are saved as you work on them, there is no
need to save copies as you go along.

To open an existing project in OpenRefine you can click ‘Open Project’ from the main OpenRefine
screen (in the lefthand menu). When you click this, you will see a list of the existing projects and
can click on a project’s name to open it.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �5 31

Going Further
Look at the other options on the Import screen - try changing some of these
options and see how that changes the Preview and how the data appears after
import.

Do you have access to JSON or XML data? If so the first stage of the import
process will prompt you to select a ‘record path’ - that is the parts of the file
that will form the data rows in the OpenRefine project.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2. Basic OpenRefine Functions
The layout of OpenRefine

OpenRefine displays data in a tabular format. Each row will usually represent a ‘record’ in the data,
while each column represents a type of information. This is very similar to how you might view data

in a spreadsheet or database.

Reordering and renaming columns
Many operations in OpenRefine are accessed from the drop down menus at the top of each
column. You can re-order the columns by clicking the drop down menu at the top of the first column
(labelled ‘All’), and choosing ‘Edit columns’ -> ‘Re-order / remove columns …’

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �6 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

You can then drag and drop column names to re-order the columns, or remove columns
completely if they are not required:

Sorting data
You can sort data in OpenRefine by clicking on the drop down menu for the column you want to
sort on, and choosing ‘Sort’

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �7 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Once you have sorted the data a new ‘Sort’ drop down menu will be displayed:

Unlike Excel ‘Sorts’ in OpenRefine are temporary - that is, if you remove the ‘Sort’, the data will go
back to it’s original ‘unordered’ state. The ‘Sort’ drop down menu lets you amend the existing sort
(e.g. reverse the sort order), remove existing sorts, and make sorts permanent.

You can sort on multiple columns at the same time.

Exercise 2: Re-order columns and sort data
• Find the ‘Date of Publication” column and sort the information by date of publication
• Move the title column to be the second column in the project (after the “Identifier” column)

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �8 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Facets
“Facets” are one of the most useful features of OpenRefine and can help both get an overview of
the data in a project as well as helping you bring more consistency to the data.

A ‘Facet’ groups all the values that appear in a column, and then allow you to filter the data by
these values and edit values across many records at the same time.

The simplest type of Facet is called a ‘Text facet’. This simply groups all the text values in a column
and lists each value with the number of records it appears in. The facet information always appears
in the left hand panel in the OpenRefine interface.

To create a Text Facet for a column, click on the drop down menu at the top of the column and
choose Facet -> Text Facet. The facet will then appear in the left hand panel.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �9 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The screenshot below shows a Text Facet on the ‘Issuance Type’ column. You can see this
contains two values ‘continuing’ and ‘monographic’. You can filter the data displayed by clicking on
one of these headings.

You can include multiple values from the facet in a filter at one time by using the ‘Include’ option
which appears when you put your mouse over a value in the Facet.

You can also ‘invert’ the filter to show all records which do not match your selected values. This
option appears at the top of the Facet panel when you select a value from the facet to apply as a
filter.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �10 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Filters
As well as using Facets to filter the data displayed in OpenRefine you can also apply ‘Text Filters’
which looks for a particular piece of text appearing in a column. Text filters are applied by clicking
the drop down menu at the top of the column you want to apply the filter to and choosing ‘Text
filter’.

As with Facets, the Filter options appear in the left hand panel in OpenRefine. Simply type in the
text you want to use in the Filter to display only rows which contain that text in the relevant column.

Working with filtered data
It is very important to note that when you have filtered the data displayed in OpenRefine, any
operations you carry out will apply only to the rows that match the filter - that is the data currently
being displayed.

In particular if you wish to remove rows that match a filter, you can do this as follows:

• Filter the data using Facets or Filters
• Clicking on the drop down menu under the ‘All’ column heading (this is always the first column in

an OpenRefine project)
• Choose ‘Edit rows’ -> ‘Remove all matching rows’

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �11 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This will remove all rows that were displayed by the filter:

Exercise 3: Remove all ‘continuing’ publications from this data
set
• Create a facet for the ‘Issuance Type’ column
• Filter the data to only show those rows which represent ‘continuing’ publications
• Remove these rows from the data set

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �12 31

Going Further
Create a text facet for the Date of Publication column. What are the problems with
this facet?

Using the facet, how would you find the most common value in the Date of
Publication column?

What happens to the “Date of Publication” facet if you apply a text filter to the “Place
of Publication column?”

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

More on Facets
As well as ‘Text facets’ Refine also supports a range of other types of facet. These include:

• Numeric facets
• Timeline facets (for dates)
• Custom facets
• Scatterplot facets

Numeric and Timeline facets display graphs instead of lists of values. The graph includes ‘drag
and drop’ controls you can use to set a start and end range to filter the data displayed.

Scatterplot facets are less commonly used - for further information on these see the tutorial at
http://enipedia.tudelft.nl/wiki/OpenRefine_Tutorial#Exploring_the_data_with_scatter_plots

Custom facets are a range of different types of facets, and also allow you write your own custom
facets. Some of the default custom facets are:

• Word facet - this breaks down text into words and counts the number of records each word
appears in

• Duplicates facet - this results in a binary facet of ‘true’ or ‘false’. Rows appear in the ‘true’ facet if
the value in the selected column is an exact match for a value in the same column in another row

• Text length facet - creates a numeric facet based on the length (number of characters) of the text
in each row for the selected column. This can be useful for spotting incorrect or unusual data in a
field where specific lengths are expected (e.g. if the values are expected to be years, any row
with a text length more than 4 for that column is likely to be incorrect)

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �13 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://enipedia.tudelft.nl/wiki/OpenRefine_Tutorial#Exploring_the_data_with_scatter_plots

• Facet by blank - a binary facet of ‘true’ or ‘false’. Rows appear in the ‘true’ facet if they have no
data present in that column. This is useful when looking for rows missing key data.

Facets are intended to group together common values and OpenRefine limits the number of values
allowed in a single facet to ensure the software does not perform slowly or run out of memory. If
you create a facet where there are many unique values (for example, a facet on a ‘book title’
column in a data set that has one row per book) the facet created will be very large and may either
slow down the application, or OpenRefine will not create the facet.

Exercise 4: Find all publications without a date of publication
• Use the ‘Facet by blank’ function to find all publications in this data set without a date of

publication
• Filter the data to only those without a date of publication - do you notice anything about these

records? [Hint: look at the “Place of Publication” column]

Amending data through facets
If you create a text facet you can edit the values in the facet to change the value for several
records at the same time. To do this, simply mouse-over the value you want to edit and click the
‘edit’ option that appears:

This approach is useful in relatively small facets where you might have small variations through
punctuation or typing errors etc. For example, a column that should contain only terms from a small
restricted list such as days of the week or months of the year.

The list of values in the facet will update as you make edits.

Exercise 5: Edit edition statements via a text facet
• Create a text facet for the Edition column
• Sort the facet by ‘count’ to see the most common values
• Pick the facets that refer to a ‘second edition’ and edit them using a consistent wording

Using Clustering to find similar values
Another function that is provided with facets is the ‘Cluster’ function. The Cluster function looks for
similar values across the facet and enables you to merge together several facets to a single value.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �14 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This is very effective where you have data where there can be minor variations in data values that
are likely such as names of people, organisations and places.

To use the the ‘Cluster’ function, create a Facet on the relevant column and click the ‘Cluster’
button. This will bring up a new window where you can see the ‘Clusters’ that have been detected
and work with them:

The ‘Clusters’ are created automatically according to an algorithm. There are a number of different
algorithms supported by OpenRefine - some experimentation maybe required to see which
clustering algorithm works best with any particular set of data, and you may find that using different
algorithms highlights different clusters.

For more information on the methods used to create Clusters see https://github.com/OpenRefine/
OpenRefine/wiki/Clustering-In-Depth

For each cluster you have the option of ‘merging’ the values together - that is replace with a single
consistent value. By default OpenRefine uses the most common value in the cluster as the new
value, but you can select one of the other values by clicking the value itself, or you can simply type
the desired value into the ‘New Cell Value’ box.

The Clustering function can also be accessed via the drop down menu at the top of a column by
selecting “Edit cells” -> “Cluster and edit …”

Exercise 6: Use Clustering to clean up publisher data
• Create a Text Facet for the “Publisher” column
• Click ‘Cluster’
• Using the ‘key collision’ method with the ‘fingerprint’ Keying Function work through the clusters of

values, merging them to a single value where appropriate

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �15 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �16 31

Going Further
Experiment with other clustering methods - which do you think gives the best
results? What is the downside of using ‘nearest neighbour’ methods with data such
as that in the ‘Publisher’ column?

Try using Clustering with other columns such as ‘Place of Publication’ and ‘Date of
Publication’

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Introducing Transformations
Through facets, filters and clusters OpenRefine offers relatively straightforward ways of getting an
overview of your data, and making changes where you want to standardise terms used to a
common set of values.

However, sometimes there will be changes you want to make to the data that cannot be achieved
in this way. Such types of changes include:

• Splitting data that is in a single column into multiple columns (e.g. splitting an address into
multiple parts)

• Standardising the format of data in a column without changing the values (e.g. removing
punctuation or standardising a date format)

• Extracting a particular type of data from a longer text string (e.g. finding ISBNs in a bibliographic
citation)

To support this type of activity OpenRefine supports ‘Transformations’ which are ways of
manipulating data in columns. Transformations are normally written in a special language called
‘GREL’ (Google Refine Expression Language). To some extent GREL expressions are similar to
Excel Forumla, although they tend to focus on text manipulations rather than numeric functions.

Full documentation for the GREL is available at https://github.com/OpenRefine/OpenRefine/wiki/
Google-refine-expression-language. This tutorial covers only a small subset of the commands
available.

To start writing transformations, select the column on which you wish to perform a transformation
and choose “Edit cells” -> “Transform…” to see the following screen:

In this screen you have a place to write a transformation (the ‘Expression’ box) and then the ability
to Preview the effect the transformation would have on the first 10 rows of your data.

The transformation you type into the ‘Expression’ box has to be a valid GREL expression. The
simplest expression is simply the word ‘value’ by itself - which simply means ‘the value that is
currently in the column’ - that is, “make no change”.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �17 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OpenRefine/OpenRefine/wiki/Google-refine-expression-language

GREL functions are written by giving a value of some kind (a text string, a date, a number etc.) to a
GREL function. Some GREL functions take additional parameters or options which control how the
function works. GREL supports two syntaxes:

value.function(options)
function(value, options)

Either is valid, and which is used is completely down to personal preference.

Next to the ‘Preview’ option are options to view:
• History - a list of transformations you’ve previously used with the option to reuse them

immediately or to ‘star’ them for easy access
• Starred - a list of transformations you’ve ‘starred’ via the ‘History’ view
• Help - a list of all the GREL functions and brief information on how to use them

Some simple transformations

Exercise 7: Cleaning up Date of Publication using simple
transformations
• Create a facet based on the Date of Publication column
• Sort the facet by ‘name’
• What are common issues with the values in this list?
• Use the ‘replace’ GREL expression to remove the characters [,] and ? from the Date of

Publication column

GREL expression Examples Action carried out

toUppercase(string) toUppercase(value)
value.toUppercase()

Converts the current value to
uppercase

toLowercase(string) toLowercase(value)
value.toLowercase()

Converts the current value to
lowercase

toTitlecase(string) toTitlecase(value)
value.toTitlecase()

Converts the current value to
titlecase (i.e. each word starts
with an uppercase character and
all other characters are converted
to lowercase)

trim(string) trim(value)
value.trim()

Removes any ‘whitespace’
characters (e.g. spaces, tabs)
from the start or end of the current
value

substring(string, number from,
optional number to)

substring(value, 0, 4)
value.substring(0,4)

Finds the first four characters of
the current value

replace(string, string to find,
replacement string)

replace(value,“a”, “b”)
value.substring(“a”, “b”)

Find the letter ‘a’ in the current
value and replace it with the letter
‘b’

+ “Prefix: ” + value Adds (concatenates) the word
“Prefix” to the front of the current
value

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �18 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �19 31

Going Further
What other issues can you see with the date of publication column?

What approaches might you use to overcome these issues?

Do you think it is possible to achieve a single column with a four digit date in it to
represent date of publication?

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Undo and Redo
OpenRefine lets you undo, and redo, any number of steps you have taken in cleaning the data.
This means you can always try out transformations and ‘undo’ if you need to. The way OpenRefine
records the steps you have taken even allows you to take the steps you’ve carried out on one data
set, and apply it to another data set by a simple copy and paste operation.

The ‘Undo’ and ‘Redo’ options are accessed via the lefthand panel.

The Undo/Redo panel lists all the steps you’ve taken so far. To undo steps, simply click on the last
step you want to preserve in the list and this will automatically undo all the changes made since
that step.

The remaining steps will continue to show in the list but greyed out, and you can reapply them by
simply clicking on the last step you want to apply.

However, if you ‘undo’ a set of steps and then start doing new transformations, the greyed out
steps will disappear and you will no longer have the option to ‘redo’ these steps.

If you wish to save a set of steps to be re-applied later, or to a different project, you can click the
‘Extract’ button. This gives you the option to select the steps you want to save, and to copy the
transformations included in the selected steps in a format called ‘JSON’

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �20 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

To apply a set of steps you have copied or saved in this ‘JSON’ format use the ‘Apply’ button and
paste in the JSON. In this way you can share transformations between projects and each other.

Undo/Redo data is stored with the Project and is saved automatically as you work, so next time
you open the project, you can access your full history of steps you have carried out and undo/redo
in exactly the same way.

Exporting data
Once you have finished working with a data set in OpenRefine you may wish to export it. The
export options are accessed through the ‘Export’ button at the top right of the OpenRefine interface

Export formats support include HTML, Excel and comma- and tab-separated value (csv and tsv).
You can also write a custom export, selecting to export specific fields, adding a header or footer
and specifying the exact format. 

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �21 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3. Data types and Regular Expressions
Understanding data types and regular expressions will help you write more complex
transformations using GREL.

Data types in OpenRefine
Every piece of data in OpenRefine is has a ‘type’. The most common ‘type’ is a ‘string’ - that is a
piece of text. However there are other data types available and transformations let you convert
data from one type to another where appropriate. The data types supported are:

• String
• Number
• Date
• Boolean
• Array

The first three are hopefully self-explanatory, but the latter two may require slightly more
explanation.

A ‘Boolean’ is a binary value that can either be ‘true’ or ‘false’. Boolean values can be used
directly in OpenRefine cell, but is more often used in transformations as part of a GREL
expression. For example:

value.contains(“test")

Generates a boolean value of either ‘true’ or ‘false’ depending on whether the current value in the
cell contains the text ‘test’ anywhere. Such tests can be combined with other GREL expressions to
create more complex transformations.

An ‘Array’ is a list of values, represented in Refine by the use of square brackets containing a list
of values surrounded by inverted commas and separated by commas. For example an array listing
the days of the week would look like:
[“Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,”Saturday”,”Sunday”]

Arrays can be sorted, de-duplicated, and manipulated in other ways in GREL expressions, but
cannot appear directly in an OpenRefine cell. Arrays in OpenRefine are usually the result of a
transformation. For example the ‘split’ function takes a string, and changes it into an array based
on a ‘separator’. For example if a cell has the value:

“Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday”

This can be transformed into an array using the ‘split’ function:

value.split(“,”)

This would create the array containing the days of the week:

[“Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,”Saturday”,”Sunday”]

This can be combined with array operations like ‘sort’. For example, assuming the cell contains the
same value as above, then the function:

value.split(“,”).sort()

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �22 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Would result in an array containing the days of the week sorted in alphabetical order:

[“Friday”,“Monday”,”Saturday”,”Sunday”,”Thursday”,”Tuesday”,”Wednesday”]

To output a value from an array you can either select a specific value depending on its position in
the list (with the first position treated as ‘zero’). For example:

value.split(“,”)[0]

Would extract the first value from the array created by the ‘split’ function. In the above example this
would be “Monday”

You can also join arrays together to make a ‘String’. The GREL expression would look like:

value.split(“,”).sort().join(“,”)

Taking the above example again, this would result in a string with the days of the week in
alphabetical order, listed with commas between each day.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �23 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Regular Expressions
A ‘regular expression’ (sometimes called a ‘regex’) is a way of representing patterns in text strings.
These can be used to search for text that matches the pattern represented by the regular
expression. Regular expressions typically surrounded by ‘/‘ characters.

To write a regular expression you need to know the special syntax used to represent different types
of characters that can occur in a text string. The table below introduces some of these:

These special characters can be combined with any normal characters to form a regular
expression. So to find both the ’s’ and ‘z’ spellings of ‘organize/organise’) could be:

/organi.e/

Here the ‘.’ character can represent any character and so this would match both ‘organise’ and
‘organize’. Because ‘.’ can represent any character this could also catch other patterns that might
occur. To be more specific you could use:

/organi[sz]e/

Type of character Regular expression syntax Explanation

Any character . A ‘period’ can represent any character at all -
essentially a ‘wildcard’

A list or range of
characters

[<list/range to be matched>] You can put a list of characters or a range of
characters inside square brackets to match any of
the characters in the list. e.g.

[ABC]

matches A or B or C (note this is case sensitive).

[A-Z]

matches any uppercase letter

[A-Za-z0-9]

matches any upper or lower case letter or any digit

Any digit \d The syntax ‘\d’ will match any single digit character
(equivalent to [0-9])

Any ‘word’
characters

\w The syntax ‘\w’ will match any character that can be
part of a ‘word’. In practice this means any letter
(upper or lower case), any digit or the underscore
character. (equivalent to [A-Za-z0-9_])

Any ‘whitespace’
characters

\s The syntax ‘\s’ will match any ‘space’ type character
- such as a space, a tab, or a newline.

The start of a string ^ The syntax ‘^’ will match the start of the string -
useful if you want to find strings that start with a
specific pattern

The end of a string $ The syntax ‘$’ will match the start of the string -
useful if you want to find strings that end with a
specific pattern

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �24 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

These (and other) character matches can be combined with ‘repetition’ operators, which allow you
to say how many times a character or pattern is repeated. Repetition operators apply to the
character or expression immediately preceding the operator. The repetition operations are:

In addition you can specify exact numbers of repetitions, or a maximum/minimum number of
repetitions using curly brackets containing one or two numbers:

/a{2}/

Matches the letter ‘a’ appearing twice (i.e. matches ‘aa’)

/a{2,4}/

Matches the letter ‘a’ appearing a minimum of two times or a maximum of four times (i.e. matches
any of ‘aa’, ‘aaa’, ‘aaaa’)

There are many online resources which provide tutorials on using Regular Expressions, including:

• http://www.regular-expressions.info
• http://software-carpentry.org/v4/regexp/index.html

Repetition
character

Meaning Explanation/Example

* The preceding character/
expression can be repeated any
number of times (including zero)

The regular expression

/.*/

represents any text string at all (any character repeated
any number of times)

+ The preceding character/
expression can be repeated one
or more times

Unlike the ‘*’ using a ‘+’ means the character must
appear at least once. The expression

/head\s+/rest/

would match ‘head rest’ (one space), ‘head rest’ (two
spaces) but not ‘headrest’.

? The preceding character/
expression can be repeated 1 or
zero times

Essentially makes a character optional in a regular
expression. The regular expression

/colou?r/

would match both ‘colour’ and ‘color’

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �25 31

Going Further
Write a regular expression that would find a four digit number in a string

Write a regular expression that would find a date written using the format ‘dd-MM-
yyyy’

Write a regular expression that would find a date written in either the format ‘dd-MM-
yyyy’ or ‘dd-MM-yy’

Write a regular expression to find a thirteen digit ISBN

http://www.regular-expressions.info
http://software-carpentry.org/v4/regexp/index.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

• http://www.codeproject.com/Articles/939/An-Introduction-to-Regular-Expressions
• http://regex.bastardsbook.com

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �26 31

http://www.codeproject.com/Articles/939/An-Introduction-to-Regular-Expressions
http://regex.bastardsbook.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Using the ‘match’ transformation with Regular Expressions
Another feature of Regular Expressions is that you can ‘capture’ parts of the matched string to do
some further work with. In OpenRefine, this is particularly used with the ‘match’ function. The
‘match’ function allows you to extract particular parts of a string by using a regular expression
which captures parts of the matching string. To tell the ‘match’ function which bits of the matched
string you want to capture, you simply surround those parts of the regular expression with brackets
().

For example, if you have strings like:

pp. 40. G. Bryan & Co: Oxford
pp. 64. W. Cann: Plymouth
pp. 92. Heath Cranton: London

(representing number of pages, publisher and place of publication). You could use the ‘match’
function as follows

value.match(/pp. (\d*).*/)

This would find the number following ‘pp’ in each row and put it into an OpenRefine Array - so for
the rows above you would get:

[“40”]
[“64”]
[“92”]

In the ‘match’ function the regular expression used has to match the full string, but only the parts of
the regular expression in brackets are put into the array. A more complex example with the same
example strings might be:

value.match(/pp. (\d*)\. (.*):\s*(.*)/)

This has three capture groups - the page number, the publisher and the place of publication -
getting the output:
["40", "G. Bryan & Co", “Oxford”]
["64", "W. Cann", “Plymouth”]
["95", "Erskine Macdonald", “London”]

Exercise 8: Extracting dates of publication from the ‘Place of
Publication’ column
In Exercise 4 above you may have noted that in many cases where the ‘date of publication’ value
was blank, there was a date in the ‘place of publication’ column. This exercise is to use what you
have learnt about facets, transformations, data types and regular expressions to extract these
dates and put them in the ‘Date of Publication’ column.

• Make sure you are only working with records where the Date of Publication is blank [Hint: See
Exercise 4]

• Working with the Place of Publication column, use the ‘Add column based on this column’
function [Hint: Look in the drop down menu for this column]

• Use the ‘match’ function with a regular expression to find where the Place of Publication column
ends with a four digit number
• When using the ‘match’ function, you have to use ‘capture groups’ in your regular expression

(see above under ‘Regular Expressions’)
• The output of the ‘match’ function is an Array - you’ll need to get a string value from this 

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �27 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

4. Advanced Refine
Looking up data from a URL
OpenRefine can retrieve data from URLs. This can be used in various ways, including looking up
additional information from a remote service, based on information in your OpenRefine data.

As an example, you can look up names against the Virtual International Authority File (VIAF), and
retrieve additional information such as dates of birth/death and identifiers.

Typically this is a two step process - firstly a step to retrieve data from a remote service, and
secondly to extract the relevant information from the data you have retrieved.

To retrieve data from an external source, from the drop down menu at a column heading use the
option ‘Edit column’ -> ‘Add column by fetching URLs’.

This will prompt you for a GREL expression to create a URL. Often this would be a URL that uses
existing values in your data to build a query.

For example if you have a list of Author names, and wish to retrieve information from VIAF you can
build a URL by appending the name to the end of a general VIAF URL as follows:

"http://viaf.org/viaf/AutoSuggest?query="+ escape(value, 'url')

(assuming that the column you are working from contains names the ‘value’ variable will contain
the value from the current cell)

This VIAF service returns a list of possible matches in a format called ‘JSON’. There is GREL
function to extract data from JSON formatted data called ‘parseJSON’. This can be used to extract
values from the JSON retrieved from VIAF. For example the following expression will extract the
first name with a VIAF ID.

forEach(value.parseJson().result, v, v.term + ' | ' + v.viafid)[0]

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �28 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The process of retrieving data from external services in this way can be very slow, and is best used
on small data sets

Exercise 9: Retrieving VIAF IDs for Authors
• Use the drop down menu at the top of the Date of Publication column and select ‘Text Filter’
• Type ‘1800’ into the Date of Publication text filter - this should reduce the number of records you

are working with to about 26
• Use the drop down menu at the top of the Author column and select ‘Edit column’ -> ‘Add column

by fetching URLs’
• In the ‘New column name’ box type “VIAF JSON”
• In the ‘Expression’ box, type the expression:

• "http://viaf.org/viaf/AutoSuggest?query="+ escape(value, 'url')
• Click ‘OK’
• Wait for OpenRefine to retrieve the data from VIAF - this may take a few minutes
• Use the drop down menu at the top of the new “VIAF JSON” column and select ‘’
• In the ‘Expression’ box, type the expression:

• forEach(value.parseJson().result, v, v.term + ' | ' + v.viafid)[0]

This should leave some of the boxes in the column populated with author names and IDs from
VIAF.

Reconciliation services
Reconciliation services allow you to lookup terms from your data in OpenRefine against external
services, and use values from the external services in your data.

Reconciliation services can be more sophisticated and quicker than using the method described
above to retrieve data from a URL. However, to use the ‘Reconciliation’ function in OpenRefine
requires the external resource to support the necessary service for OpenRefine to work with, which
means unless the service you wish to use supports such a service you cannot use the
‘Reconciliation’ approach.

Extensions
The functionality in OpenRefine can be enhanced by ‘extensions’ which can be downloaded and
installed to add functionality to your OpenRefine installation.

A list of Extensions is given at https://github.com/OpenRefine/OpenRefine/wiki/Extensions

One of these extensions tries to work around the limitation of Reconciliation services described
above, by making it possible to use a reconciliation service against ‘linked data’ sources which 1

have SPARQL endpoints . For more information on this see the ‘RDF Extension’ at http://2

refine.deri.ie. An example of how this works is given in more detail at http://refine.deri.ie/
showcases.

Records and Rows
All the examples above use OpenRefine in ‘Row’ mode, where it is assumed that each row in the
table represents a ‘record’.

 Linked Data is a specific data format that is seeing increased usage in the library and cultural 1

heritage sector

 SPARQL is a language used to query ‘Linked Data’ and a “SPARQL Endpoint” is the URL to 2

which such queries can be sent
This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �29 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/OpenRefine/OpenRefine/wiki/Extensions
http://refine.deri.ie

However, OpenRefine supports a more complex model of ‘Records’ which allows you to have
multiple values for a single column in a single record. For example, it is not unusual for a book to
have multiple people (or ‘contributors’) involved in the creation of the book.

In the screenshot below you can see the options to select a to ‘Show as’ rows or records, and also
see how row 11 has tow contributors listed.

The “records’ approach is occasionally useful and can be used when you have two rows in the
original data set that represent the same ‘thing’ (book/person/place/etc.) and wish to merge the two
rows into a single row, preserving information from both original rows.

For more information on how you can create Records in OpenRefine see http://
googlerefine.blogspot.co.uk/2012/06/create-records-in-google-refine.html

Using the ‘cross’ function to lookup data in other OpenRefine
projects
As well as looking up data in external systems using the methods described above, it is also
possible to look up data in other OpenRefine projects on the same computer. This is done using
the ‘cross’ function.

The ‘cross’ function takes a value from the OpenRefine project you are working on, and looks for
that value in a column in another OpenRefine project. If it finds one or more matching rows in the
second OpenRefine project, it returns an array containing the rows that it has matched.

As it returns the whole row for each match, you can use a transformation to extract the values from
any of the columns in the

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �30 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://googlerefine.blogspot.co.uk/2012/06/create-records-in-google-refine.html

You can use to compare the contents of two OpenRefine projects, or to use data between the two
projects.

This work is licensed under a Creative Commons Attribution 4.0 International License
http://creativecommons.org/licenses/by/4.0/. Page � of �31 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

